

Langmuir Probe in Plasma Diagnostics

Andoni Pérez Segura (andoni.perezs@ehu.eus)

PhD Student

January 2025

Outline

- 1. Why are we here?
- 2. What is plasma?
- 3. Langmuir probe:
 - 1. I V Curve
 - 2. Transition Region
 - 3. Electron saturation
 - 4. Floating potential
 - 5. Space potential
 - 6. Ion saturation current
- 4. Probe designing

1. Why are we here?

- Thesis → Design and construction of a D-D compact neutron source
- D-D fusion reaction:
 - 2.45 MeV neutrons

2. What is plasma?

- 4th fundamental state of matter: solid, liquid, gas and **plasma.**
- It consists of ionized gas, where atoms or molecules have lost or gained electrons, creating a mix of free electrons and ions.
- Parameters:
 - Density and ionization degree: $\alpha = \frac{n_i}{n_i + n_n}$ $n_i = \text{ion density}$ • $n_n = \text{neutral density}$
 - *Temperature (K, eV):* measure of the thermal kinetic energy per particle.
 - *Plasma potential:* The average potential in the space between charged particles is called the "plasma potential", or the "space potential".
 - Sheath: T_e >> T_i because m_e << m_i. So, they can escape from plasma at a much faster speed than ions if there is no confining potential barrier. Once electrons are mostly depleted from the boundary interface between plasma and electrodes or samples, a region with only positive ions and neutrals will be formed.

3. Langmuir Probe

- Irving Langmuir \rightarrow Electron temperature (T_e) 1924, Chemistry Nobel prize 1932
- A metal wire placed in a plasma to measure current and voltage to obtain:
 - T_e , T_i , n_e and n_i

- Transition region:
 - $V_f < V_p < V_s$
 - Ion current is negligible and the electrons are partially repelled by the negative potential $V_p V_s$
 - Exponential part of the I V curve only if electrons follow a Maxwellian energy distribution
 - In this region the I_e can be described as:

• Electron saturation:

- $V_p \ge V_s$
- At $V_p = V_s$, none of the electrons is repelled by a negative potential. The I_e saturates.
- It is recommended to avoid collecting I_{es} as it can damage the probe.
- I_{es} only gives information about the electron density in low pressure plasmas where the free path is very large.
- Collisions and magnetic fields will lower the magnitude of I_{es} and round off the "knee" so V_s is hard to determine.

8

- Floating potential:
 - $V_f \rightarrow I_i = I_e$
- Space potential:
 - The conventional way to obtain V_s is to draw a vertical line just in the "knee". Not working in *curved* I_{es} .
 - We select as V_s the point where I_e starts to deviate from exponential growth.
 - Where $I'_{e}(V)$ is maximum.

9

• Ion saturation:

- Measure n_e with I_{es} can lead to probe damage.
- I_{is} is much smaller and because of plasma's quasineutrality we can consider n_e = n_i.

•
$$n_s = 0.5 n_i$$

Impedans **IMPEDANS | LANGMUIR PROBE** Electron and Ion Collection https://youtu.be/XiNE-H g9t8

Key Differences:

Aspect	OML Theory	ABR Theory
Sheath Consideration	Assumes a thin sheath.	Accounts for finite sheath effects.
Object Size	Valid for small objects ($r \ll \lambda_D$).	Applicable to larger objects.
Plasma Collisions	Assumes a collisionless plasma.	Can include collisional effects.
Complexity	Simpler, based on particle orbits.	More complex, includes sheath dynamics.

4. Probe Designing

- The design process is critical to obtain a precise I –V curve as the probe will be inmersed in a harsh environment.
- The probe tip is made of a high-temperature material, usually a tungsten rod or wire. Ø = 0.1
 -1 mm.
- To insulate the the probe from the plasma, except the tip, **ceramic tubes** (alumina) are used. They need to be as thin as possible to avoid disturbing the plasma, < 1 mm.
- When in the ion current region, the probe can be eroded by sputtering which could modify the collection area. Minimized by using carbon as tip material.

